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I. INTRODUCTION

A. BACKGROUND

After World War II, a very important issue in the war

was realized which, if used effectively, would bring the
victory: Logistics.

One result, arising out of the second World War, has
been the existence of two super powers in the world. Ed&dch of
them has its own poelitical, military and economic view-
points. As a result of this, the NATO (Morth Atlantic Treaty
Organization) has been established by the United States and
some of the European countries who believe in the power and
necessity of freedom. Since then, these members of NATO have
worked together to provide required materials, military aids
and education to each other, in order to develop a powerful:
and strong defense system against possible future threats.

During .this development, a supply system has been nseded
to provide countries with required items in some designated
time. The Supply System of the United States has been
approved as the Supply System of NATO with some minor
changes. Nowadays, most of the NATO members use this system
as their own National Supply System.

However, from the establishment of NATO to the present,
there has been no study about providing an error detection
and correction mechanism in order to have a more reliable
and efficient system.

The fundamental problem of communication is that of
reproducing at one point, either exactly or approximately, a
message selected at another point. The significant aspect is
that the actual message is a selected message from a set of
possible messages. The system must be designed to operate
for each possible selection, not just the one which will

actually be chosen [Ref. 1]. A National Stock Mumber (MN3I),
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can be ¢onsidered as a message for this purposes. This
thesis develops an error correction coding system for N3I's

which allows correction of a broad class of errors.

B. GENERAL VIEW OF A SUPPLY SYSTEM .

The existing supply system is a kind of bridge between
resources and requirements by providing material at the
required places at the required times. Therefore, the speed
and accuracy of the supply are very important. In order to
identify a specific item in the stock, it is necessary to
provide an identifier and material classification.

1. Material Classification

There are over four million items in the United
States Department of Defense Supply System. The Navy Supply
System alone stocks over one million items. If we consider
all NATO member's stocks, the size of the system would be
staggering. For proper requisitioning of an item, a common
language has been developed: the Federal Catalog System
(EFCS). The most important component of this system is the
NSN.

2. ational Stock Number N

A NSN is a 13 digit number assigned by the Defense
Logistic Services Center (DLSC) to identify items of
material in the Supply Distribution System of the United
States. It consists of a four digit Federal Supply
Classification Code (E3C), a two digit National Codification
Bureau Code (BC), and a seven digit National Item
Identification Number (NIIN). The NIIN part of a NSN is the
m¢st significant part and is used to uniquely identify each

NSN item in the Federal Supply Distribution System [Ref. 2]

Construction of a NSN can be seen in Figure 1. 1.

10
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Figure 1.1 Construction of a NSN

3. ato Stock N er

As mentioned earlier in this chapter, the main logic
for the Nato Supply System is almost the same as in the
National Supply System of the United States. The only
difference is the names of the three parts existing in NSN.
The corresponding names are explained in Table I.

The main difference is a two digit Country Code
(also called Source Code) assigned for each NATO member
instead of National Codification Bureau Code in the National
Supply System. As an example, 00 and 01 represent the United

States in this classification.

C. PURPOSE OF STUDY

The subject area of this thesis, the theory of error
correcting codes, started as a subject in Electrical
Engineering with Shannon's classic papers in 1948 and 1949.
It has since pecome a mathematical topic and a part of the
fascination has been the use of many varied tools to solve
practical problems in coding. The possibility of applying
finite field theory to problems in discrete communication
was recognized in the late 1950's. One such class of codes
which 1is very famous and popular in this area 1is thea
Reed=Solomon (RS) codes. These codes are checsen to built an
error recovery mechanism in this thesis because of tlieir

effectiveness and ease of use.
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The goal of this thesis is to provide an error recovery
method for the existing Supply System using recent tools in
the Computer Science area, such as data base applications,
and combining them with the Reed-Solomon cocdes application.

In an effort to assist the reader in simplicity and
comprehension of this abstract subject, this author has
taken the pertinent information vital to the thesis and
created a chapter for each. After the general view of the
supply system is introduced in this chapter, the necessary
fundamentals of finite fields and algebraic coding theory
are presented in Chapters II and III. In Chapter IV the
presentation of Reed-Solomon codes is made and the implemen-
tation theory is discussed in Chapter V. Implementation of
the RS codes to the existing system is presented in Chapter
VI. Finally, a possible interface between users and an
existiing database is described in Chapter VII using the
implementation of Reed-Solomon ches discussed in Chapter
VI. Conclusions of the thesis are represented in Chapter

VIII.

TABLE I
CORRESPONDING NAMES IN NATO SUPPLY SYSTEM

MName Field in NSN Corresponding in Nato Supply System
Federal Supply Nato Supply Classification
Classification (FSC) {NSC)
llational Codifica. Nato Source ECountry) Code
BUREAU Code ( BC) ( SC)
i !lational Item Ident. Mato Item Identification ! |
| liumper (UIIL) Mumber (MIIN) }
! i
d\(‘
3
o
X
A .-
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" }
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II. ALGEBRAIC CODING THEQRY

A. CODING WITH ALGEBRAS: LINEAR CODES
1. VYector Spaces

A vector space Vn(K) of dimension n is a set of n
long vectors V = (vl, v2, v3, . . ., V) of elements in some
field K and V forms an additive commutative group that also
admits multiplication by scalars or elements from the field
K. The rules for this scalar multiplication are;

If a, b ¢ K, Vi ¢ V then
* a*V ¢ V ; 1*v = v ; a*(b*v) = (a*b)*v
o a*(vl + vz) = a*vl + a*v2
* (a + b)*v = a*v + b*v

Addition of two vectors vy and v, is by component-
wise addition by the addition defined in the field K. As an
example. if V (K) is the set of binary n-tuples, then K is
the scalars, the elements 0 and 1 of the field of 2
elements.

2. Related Definitions
Linear Dependence: If V is a vector.space and K is

the scclar field, then a set of e vectors, Vi/ Voo « .. Vg,
are said to be linearly dependent over K if there exists a
set of scalars, €1:C2s+ - -.Cqy not all of them 2zero, such
that;

cq * vy * Cy * Vo *. . .+ Cg * Ve = 0

Linear Independence: If the set of e vectors is not

linearly dependent, i.e. , there do not exist scalars
C1.C2,. . -.Cq such that
Ci*Vi =0

i=g
then the vectors are said to be linearly independent.

13
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Dimensjion of V : Let m be the largest number of
linearly independent wvectors of V. The dimension of V is m.

B. GENERATOR MATRIX

iﬁﬁ . Let A be an (n,k) group code. Choose k linearly indepen-
'¥& dent vectors of A. Write these out as rows. The k rows form
BN

QE _ a (k*n) matrix G called the generator matrix for A. Every

code vector is some linear combination of the rows of G.

This matrix description serves as a compact list of all
code vectors. For example a (13,11) code can be described by
a 11*13 t-ary matrix while the code contains tll vectors
where t is the size of the underlying field K.

ﬁ? 1. t te Descriptions. Parj
ﬁ%ﬁ If a = (a;) and b = (b;) then , we introduce the dot
éﬁ‘ product (scalar product) of the two n-long vectors a and b,
i (a.b) as
n
(a.b) = :E; ai.bi (2.1)
is

'i[ ’ It should be remembered that, sums and products are
|
!

&g performed in K, which was introduced as the underlying

ﬁ%f : field. If a.b = O then a is said to be orthogonal to b.

hm Now, let us consider a matrix H, which is a (n-k *
n) matrix, whose rows are linearly independent.

ﬁ& 'Let vl be an orthogonal space tq H, that is, a ( vl

$ﬂ: --> a.uJ = 0, j=1,2,. . .,n-k where uJ is a row in V. In

ﬁﬂg matrix notation aHI= O (a is a 1*n vector here; T signifies

o transpose). H 1is called the parity check matrix to vi, We

ﬁg first note that if a is orthogonal to the vectors (rows) of

%%h H, it is orthogonal to the vector space spanned by these

Q&g vectors (by forming linear combinations of these vectors).

—= We will illustrate by the following example how a parity

3&; ) check matrix can be obtained:

i
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defined as,

1110010 |
H=]1100101 |
| 1001010 |

In this example H is a (3*7) matrix. Then Vl is a
(7,4) group code containing the all one vector. We can also
say that, the (13,11) code discussed in this section
requires only a (2*13) parity check matrix for its descrip-
tion. An example of an important code obtainable using

vector space or matrix methods is the Hamming code.

C. CODING WITH FINITE FIELDS: BINARY CYCLIC CODES

The most important group codes are the cyclic ones.
These codes are distinguished by their ease of encoding and
by the highly algebraic mechanizable approach to their
decoding.

The first discovery 1in this area was made by
Bose-Chauduri and Hocgquenghem independently. But the
approaches, introduced by these two, has minimal error
correcting capability [Ref. 3]

Nowadays, there are many approaches to the exposition
and treatment of these codes. However, certain mathematical
knowledge and tools are required. For that reason, we intro-
duce some more details before examining a most useful set of
codes in this area , Reed-Solomon codes, in Chapter IV.

1. Einjite Difference Eguations

One of the most common approaches to cyclic codes is
via finite difference equations. This approach represents
one particular way of encoding that results in systematic
cyclic codes. A major advantage of this approach is that,
the encoding ocf cyclic codes becomes very natural and the
decoding procedures emerge as a direct consequence.

Let us consider a finite difference equation of

degree k, with constant coefficients in the field F:
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R | Anek ¥ U1psk-1 * Uzpsk-2 - - - Y Upjapgg t wpa, =0
PNy |
Yy where u; ¢ F , n=0,1,2,3,
SR | .
(r*E We wish to solve the above difference equation,
LY .
% zi given k initial wvalues; ag,ajy,az,. . ., ( F. A general
J |
$$= apprcach to the solution is illustrated in the following
DN
O example.
S Example 3. 2: In this example we show that, the
Q?f codeword (or output word) can be obtained by using the given
§Qi finite difference equation and the given initial values. We
%“i say, ap43 ¥ @41 * ag = 0 is the finite difference equation
$.| and ag = 1, a; = 0, a, = 1l are the initial wvalues. The
G |
3. required operation could be performed over F, the field of 2
KN
M “ elements, in following way;
&

-‘ a3=ao+a1=l+o=1"->a3
S'E .
{:" ’ ag = a) *+ap; =0+ 1=1-==>a,
W
% ag = ap + a3 =1+ 1=0 ==>ag
-! 36=.33+a4=1+1=0">36

e

5 .
%q ay = ag +ag =1+ 0=1-=-=>ag
LS
'5‘0 a8=a5+a6=0+0=0-->a1
4;;::5 ag=86+a7=0+1=1-->a2
'o'ﬁ:i
l."*
g ajp= a7 *ag =1+ 0=1-->ag
$;: and as it turns out, the sequences a, obtained by this
53 method are ultimately periodic.
ﬂ,: Then the codeword obtained by performing this opera-

tion is 10111C0 repeated periodically. We will use shift

~5 reqgisters to provide the encoding process £for this example.
:" o~ € i i =

e E2r the above problem, it is clear that, ap_q = ap_» + ap_3
- ' and we also know the initial wvalues. All we need to do 1is,

~
¢
‘ -
s 15
\
W,
7y ]
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A% “l". LA h '.’!-“ MO “.' ‘.'.“' '.(". oo " W, .“ M l.?'l ‘.'b"'l.'.'s"'l. ] ."i. 'l by 'C o, -'I !.



Py bl ok Al o v TTwaNareTTew " o - - v

kth element of the code will

construct a cycle in which the
calculated just by adding previous register wvalues. We use
the given formula, when building the shift register diagram

as represented in Figure 2.1.

+ ’-—)

ak-1 |“> ak-2 |“>

u (1) ( 2) ( 3) ?

STEP #: POSITION #: ouTPUT
Ny #1 #2 #3

0 _ Initial

-——> aO

-t

- a;
_———> a
———D> as

-——-> a4

———D> as

- 36 \!

W 9 0 N W
~ = O = O O +H K
= O » O O B + +» O
O = O O = +H B O +
= O O = = B O +

--=> ag

" CODEWORD (OQUTPUT) : 1011100.

e

-

Figure 2.1 Shift Register Application

—~
A

D. (MN,K) CYCLIC CODE
h} We have, via the recursion polynomial f(x), a natural
D mapping of k-tuples into n-tuples, given by the recursion

| rule (or difference egquation):
i
|
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ﬁ ag, ajy,. - .,8p.1="==> apg,. . .,8p_.1/8p/. - -, 807
&: where the a; are given by the difference eguation. This
mapping is linecr, i.e., preserves the group structure. The
o number of distinct initial a's is 2K and the linear property
E; E states, 1if a arises from (ag, alﬂ e e, ak—l) and b from
3% i (bo, bl" .., bk-l)' then a+b arises from (ao+bo,a1+b1”
csapoytbroq)- Thus we have generated an (n,k) group code.
ﬁ" This particular group code is cyclic in the sense that, if a
%& | = (ag, ay,. - -.,an_.1) is a codeword, any word obtained by
fg ! cyclically shifting .a by a position to the right or left
N along this sequence is also a codeword. That is, (a;, aj,.
&; i ., ap.1.3g), (ag, ag . ., ag, aj, ay, az), etc. , are also
}{ , codewords.
ﬁh | The conclusion 1is straightforward. If we choose any
. polynomial f(x) of degree k with coefficients in GF(2) and
$‘ with no repeated roots, which divides 'l but not x™1, n
,3 < n, then by forming the associated difference equation, we
?: have a means of generating an (n,k) group code.
”k Example 3. 3: Let f(x) = x3 + x + 1., f(x) is a factor of
‘: x7 + 1. The associated difference equation will give rise to
f& a (7,3) cyclic code, where for example 111 =--=-=- > 1110010.
L Any other nonzero condition yields a codeword which is a
N cyclic shift of the given codeword.
;fr Figure 2;2 shows how we produce this expansion. All we
o need to do is, sum up the last two digits, write down this
" sum as a new digit (to the left side), and shift all digits
v one position to the right. The codeword is obtained from
E% first digit to seventh digit , i.e., from left to right.
% Cyclic c¢codes are useful for the ease of the encoding
N processes as they are easily mechanized by shift register
:E devices. The cyclic property clearly minimizes storage
::3 facilities. Further these codes are easily analycable, and
E¢$ also have very efficient decoding properties. The decoding
'
s
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STEP #: POSITICN : OUTPUT:

Initial 111 -
oY Shiftl 011
oy Shift2 001
o Shift3 100
ok Sshift4 010
;Q Shift$s 101
o Shift6 110
Shift7 111

O H O O H H
U w o T mU o O

Figure 2.2 Creation of a Codeword

Ry also proceeds via a shift register algorithm. We omit the
o8 details of the general shift register decoding here and
illustrate the decoding in a specific instance later.
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EIMITE ELD

HEORY

A. BACKGROUND

% Finite or Galois fields (named after the nineteenth
; century French mathematician Evariste Galois) play many
important roles in signal processing and information theory
applications. However, in this thesis we are concerned only
with their use in the construction of Reed-Solomon error

correcting codes. We- begin with the general definitions in

order to understand the pertinent facts regarding finite
fields.

B. CONSTRUCTION
1. Definitions
A field is a set of elements, including 0 and 1, any
pair of which may be added or multiplied, (denoted by + or
*, respectively), to give a unique result in the field.

. The basic building blocks are  the prime fields F

|

: P
E ,Wwhere p is a prime number. Fp is the field whose elements
? are 0,1,. . .,p-1, and arithmetic is performed modulo p. The

additive structure is that of the vector space defined in
the previous chapter.

The addition and multiplication are associative and
commutative, and the multiplication distributes over addi-
tion in the usual way: u*(w+v)=u*w+u*v. Every field element
u has a unique negative =-u such that u+(-u)=0. Every nonzero
field element u has a unique reciprocal field element 1,u,
such that u*(1l/u)=1. For every field element u,
O+u=u=1l*u, and O*u=0. Thus the numbers 0 and 1 are the addi-
tive and multiplicative identities, respectively.

The order of the field is the number of elements in
the field. If the order is infinite, the field is called as

an infinite field and if the number of elements is finite,

we call the field a finite field.




o

A

:1 C. MULTIPLICATIVE STRUCTURE

:?' Let Fy be a finite field with q = p™ elements. The
. - nonzero elements of Fq form a commutative group, (Fq)v, of
", crder g~1, which is in fact a cyclic group under multiplica-
&; tion. Finite fields can be constructed as polynomial alge-
Ri bras by defining multiplication as pclynomial
B multiplication. If we start with two polynomials f(x) and
o g(x) of degree less than n, then their product f£(x)*g(x)
’% when formed in the usual way is not necessarily a polynomial
5& of degree less than n. In order to satisfy closure, we write
o [f(x)*g(x)] modulo P(x) where P(x) is an irreducible polyno-
& mial of degree n over the field. An element of multiplica-
;} tive order g~1, that is, a generator of the group (Fq)*, is
ﬁ: called a primitive. root.

& It thus follows that every element a in (Eq)* satisfies
3 ad-1l = l, and so every element in Eq satisfies a9 = a. 1If Fq
gﬁ is viewed as a subfield of qu for some m, then the equation
) characterizes Fq, that is, ad = a iff a is an element of Fq.
N In other words, the multiplicative group o¢f nonzero field )
5{\ elements is cyclic, i.e., it is a group *hat consists of all
i the powers of one of its elements, a. “iltiplication can
i? alternatively be defined as a'*a- = a-"J where i+j 1is

‘e
-

[

computed modulo (p™-1) and a is the genera=or of this group.

o ol

D. THE MINIMAL POLTMNCMIAL

The minimal polynomial of a is defined to be the monic

$‘% polynomial f(x) of least degree with coefficients in Fp such
- } that f(a) = 0. Over Fp f(x) 1s 1i1rreducible, but in the
R

%ﬂ; larger field Fq f(x) factors 1intos Linear fachtors:

A )

R=1
£(x)=(x-a)(x-aF). . .(z-aP" ) (3.1)

y .";

where k is called the degree o
o)

! £(%x) is the same as the degree
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If a is a primitive root in F.m the minimal polynomial
1

cf a is called a primitive polyn;;ial over F,. It is often
convenient to reverse this process and use a ﬁrimitive poly~-
nomial to construct a field.
1. An Ezample Of The Creation Of a Field

Consider the Galois field GF(24). It has 2% elements
and may be constructed as the field of polynomials over
GF(2) modulo the irreducible polynomial 1= x + x4. If we let
b represent a root of this irreducible polynomial, then it
is also a primitive element of the field. Field addition cf
the elements is bit-By-bit modulo 2 addition while multipli-
cation of the elements is described using the primitivity of
the element b. Thus, bl+pI=pi*] where i+j is reduced modulo
15, if necessary.

After defining the addition and multiplication over
GF(24), we are ready to create the field. First, we need to
have a primitive polynomial which will be order of 4. We
will select the primitive polynomial as £(x)= x¥+x+1. The
operations which are required to create the field elements
can be performed as :

f(b)= 0 ==> b =p + 1

bl> =1
bl = p
pl7 = 2

™
3]

u, Wy

RO R G P TSR ML S0 Ay 0 Sy Sas AN ST I o
VY R s T e LR g AL L AL Y

AT




T W T YW W ——

pl8 = 3

bl9 = p16 4 p15 - b 4 1 = pt

The field elements are listed in Table 1II.
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W TABLE II
0 REPRESENTATION OF GE(2%)

Field element b Polynomial 4-Tuple
o | = =---- 0000
TS
;'5'»’
e b0 1 0001
S pl . b 0010
. b2 g 0100
:‘.‘
’l‘ W 3 3
;:;;’.v, b ) 1000
_f;Q
o b4 b +1 0011
' 2
et b B+ b 0110
"
‘-$ 6 B + P 1100
%
i -
y b ‘ B+ b +1 1011
A
e b8 B +1 0101
'\
e b2 B+ b 1010
2
" p10 b+ b +1 0111
n Y
,‘$.J 2
o pll B + b+ b 1110
*.: 2
4 pl2 B+ B+ b +1 1111
124 pl3 BB 41 1101
1
s
3 pl4 B +1 1001
o
KR
&3
i 24
\ L]
3
'.jpl
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IV, REED=-SOLOMON CODES

A. BACKGROUND

Cyclic codes over an alphabet of pMm symbols were origi-

nally introduced by Gorenstein and Zierler (1961) along with
an effective error correcting procedure. They also pointed
out that the Reed-Solomon burst error correcting code may be
considered as a code in this class [Ref. 4]

Reed-Solomon codes are (qn-l,m) cyclic codes over GF(qn)
and were originally defined by Reed-Solomon differently than
the Gorenstein and Zierler formulations. The code RS(n,t)
is called a k error correcting Reed-Solomon code of length
n. In this definition t is the number of information symbols
in the codeword and k < n=-t. These codes can correct both
random and burst errors over a communication channel and
hence are ideal for the numerous real time and reliable
communications demanded by these applications. The
complexity of RS encoders and decoders are proportional to
the error correcting capability of the code, the speed of
the decoding and the interleaving depth used.

The code RS(n,t) consists of all vectors C = (Co.Cq..
"Cn-l)mx Vn(qu) such that the corresponding polynomial
C(x) = :5; cixl has the form C(x) = (x = a)(x - az). .oa(x -

a2t)I(x), where I(x) is a polynomial of degree < n-1-2t over

Fq™. I(x) 1s the polynomial of the information symbols
while (x - a) (x - a2). x - azt) is the polynomial of
the check symbols. The code has parameters:
Length : n = g1
Dimension k =n - 2t
Min. distance: d = 2t + 1
25
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B. GENERAL EMNCODING PROCESS

As mentioned earlier, Reed-Solomon <codes are cyclic
codes over GFE(g'). Let ag, a3,- . .,ap.q be elements of
GF(g™), then the code is defined in a non-systematic way as
follows:

a(x) = ag + ajx + . . . + am_lxm'1 (4.1)

We let c be a (q™-1)™ root of unity. We define b = (1o,

bl" . .,bqn_z) to be the vector whose coordinates are given
by by = a(cl) , i =0, 1,. . ., ¢°2. The code map (ag, a,,.

+sapa1) -==> (bg, by,. . .,bgn_y) gives rise to a (g™-1,m)
code with maximum distance d > g - 1 -~ (m-1) = g® - m which

will correct errors up to
n
e < (g =-m)/ 2 (4.2)

Here the length of the codeword is g® - 1 and the field
, in which the symbols lie is GF(q™). For any vector a in
an_l(qn), the codeword associated with a(x) ( ga(x) is

written very simply;

n
ga(x)=cy + cix +. . .+ (cqn_l)xq -2 (4.3)

The recursion rule or polynomial associated with the code

is;
T
(x - ct) = £(x) (1.4)

The Reed-Solomon code may thus Dbe encoded systemati-

cally.

1. General Encoding Algorithm
As discussed in Chapter III, an (n,k) code can be

< generated by a polynomial of degree n-k. If the pclynomial

26
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is primitive of degree r and n = 2Y-1, the code can be
encoded and decoded with primitive shift registers [Ref. 5].
Hence, we restrict our attention solely to the case of prim-
itive polynomials. We illustrate the required algorithm for
encoding of RS codes using primitive polynomials as follows:
1. Represent the message as a polynomial. Call this poly-
nomial m(x). Degree of m(x) is at most k.
2. Multiply m(x) by xP ¥ to shift the message digits to
the far right.

3. Calculate the remainder when xP K

m(x) is divided by
p(x). (Note that p(x) is the primitive polynomial).

4. Form the code polynomial as the sum xn-k

m(x) + r(x),
(r(x) is the remainder of the division). The check

polyncmial is actually then a multiple of p(Xx).

C. GENERAL DECODING PROCESS

The problem for decoding is to find the error positions
and symbol changes. There are two decoding procedures avail-
able to do this. The first of them requires finding the
coefficient matrix which will determine the symmetric func-
tions of the error positions, @, or finding the appropriate
augmented matrix and computing the syndromes, (Sj), for 3 >
dg. The second method will not be addressed in this thesis.

1. General Decoding Algorithm

The decoding of an RS code is composed of the
following six steps. For this algorithm, the input is the
received vector R and the output is the codeword C.
1. Compute the syndromes, using the equations:
n-4
sy = > R;at] , j =0,1,2. . .2t-1. (4.5)

2. Perform Euclid's algorithm on x4t

and S(x) = Sl + Szx
+ ...+ Sztxzt'l. Stop as soon as the degree of the

remainder rj < t. Use the same algorithm to determine
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;::‘ | the coefficients of the error locator polynomial @(x).
:}: i Then calculate w(x), the error evaluator polynomial,
Tyl
,‘-- using the fact, @(x).S(x) = w(x) (mod g(x)), where
i g(x) is an irreducible polyncmial over the field.

;,‘; 3. Find B = { b ( Fgm : @b) = 0}, by trial and error
:505 method.

oY

e 4. For each b ¢ B , set E, = w(b)/@'(b) where @'(b) is
iy the formal derivative of @(b).

Sy

~: S. For each i = 0,1,. . .,n-1 , set

O

! : o if a~! ¢ B,

E; =

14 E, if a~t ¢ B.

A0 6. Output the codeword by subtracting the error vector Ey
:.‘.L from the received vector Ry;

‘. C = (RO-EO ’ Rl-El r . . 7 Rn_l'En_l).
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V. IMEPLEMENTATIOMN THEOR

A. BACKGROUND '

In this chapter we look at the theoretical concepts
behind the creation of a particular finite field and
construction of a specific RS code. As mentioned in Chapter
I, a NSN (National Stock Number) consists of three basic
units and one of them is NIIN (National Item Identification
Number). It has also mentioned that the NIIN part of a
stock number is unique for each supply item. Thus, we will
consider only the NIIN part of the stock number when we
construct our coding scheme in the subsequent chapter.

There are seven digits in the NIIN part of the stock
number. These symbols will be the information symbols in the
codeword. We aléo, in this chapter, discuss the number and
the types of the errors we consider for the correction
process. That is, we decide how many error check digits we
must have in the codeword. We also introduce the order and
construction of the finite field we usé for our particular
application. Since the symbols are not binary, the
Reed-Solomon codeword we will design contains symbols which
lie in a larger field than GF(2). In particular, since the
symbols are digits, the field will have to have at least 10
elements. As the size of field must be a power of a prime
number, we shall use a field of 11 elements.

We also, in this chapter, discuss and decide upon the
generating polynomial g(x) and find a primitive root of
unity { generator), a, for our construction of the

Reed-Solomon code.

B. ERROR CHECK DIGITS
Before going further with the discussion and construc-

tion of the finite field we shall need, it is necessary to
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LIS CalaT R

P R I N N M AT LU o - R SR .
.y ’\"-_.‘ - . .:.“-_ _; N . -‘- __

.........




e
U .

2& find out the number of error check digits which will be used
}& in the codeword. Our coding scheme will be an interface

X (eg. :

" between users and computers. In order to figure out the

i number of check symbols, we consider the common type of

\ ,

w errors which are most likely to be made by humans. When

%. dealing with humans, three types of errors are common
! [Ref. 6]

et 1. People have a tendency to interchan%F adjacent digits
M of numbers; for example 67 becomes 76.

ﬁﬁ 2. Another common error is to double the wrong one of a

ﬂ* triple of digits, two adjacent ones of which are the
'ﬁ same; for example 667 becComes 677 merely by a change
e of one digit.

S | 3 A third kind of simple error is just the substitution

QQ f of one symbol for another.

LN

§§ These are the most common errors in arithmetic. We will
)

&a provide for the correction of two errors in our application.

This will handle the first one of these common errors as

{ﬁ well as the other errors mentioned. So, the maximum
V.

N distance required as discussed previously can be found by

g& applying the equation;

k’é;i: n - n

?? dg > @ -m=q" -7 (5.1)

e

ol

q"‘: ’ . . .

bt where m represents the number of information symbols in the

codeword. In the NIIN portion of the message, there are 7

R digits present.

o Since we want to correct up to two errors, according to
L)
£3 the equation 4.2 which we introduced in Chapter IV;
XN n
L e £ @2 - m/2 » 2 ==> g > 11 (5.2)
[
[
5%‘ Accordingly we have found from the above equation, we
0y

will choose GF(1ll) for our application. Here, g = 11 and n =
ﬁt l, and the ccmputations will be in arithmetic modulo 11. To
g; make tliis approach clear, we illustrate addition and multi-
2%
N plication over GF(1ll) in Table III and Table IV respec-

tively. The symbol A is used to represent the digit 10.
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44 Our findings from equation 4.2 show that, we will have

1
% four error check digits in the codeword. One of these (the
A last one on the right) is the parity check digit. Parity
*3 checking for this type of coding scheme provides the total
@ﬁ error amount occuring in the codeword computed modulo 11.
gg; It is obvious that, if this error amount is zero, there are
e several possible cases to be considered. Either no error
i,. occured, or there are some interchanged bits in the code-
e word, or the total error amount is a multiple of 11.
%: Therefore we provide.a decoding process by calculating all
! the syndromes first. Then the error correction procedure is
oo, as described in the decoding procedure of Chapter IV and
éé more precisely in Chapter VI.

§~ C. GENERATING POLYNOMIAL

: As mentioned in the previous chapter, the generating
;}: pclynomial for the RS code is described by the equation:

5
b g(x) = (x - b)(x - b2). . .(x - b2t-1) (5.3)
%ﬁ; where t is the error correcting capability of the RS code
3 | and b is a primitive root of unity (generator). The signifi-
iﬁf cant point here is to find the generator element first in

! order to determine the generating polynomial according to
5$§ equation 5.3. Since the RS code is cyclic; the powers of a
3%3 primitive root should generate all the roots of unity. In
é% E other words, the powers of the generator should generate all
I the nonzero elements of the finite field, namely GF(11).
a'! It can be determined that 2 is a generator, by trial and
$a' error method. For GF(1l) the verification that 2 1is a
g‘; generator is shown in Figure 5.1. Since we have the gener-
T:‘ ator 2 and we have already decided the error correcting
ﬂﬁ! capability of the code, (2 error correction) we are now able
Eﬁi to calculate the generating polyncmial.
t“
vid¥
k)
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TABLE III
ADDITION OVER GF(11)
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TABLE IV
MULTIPLICATION OVER GF(11)
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R | The generating polynomial can be obtained with reference to

the equation 5.3 and Figure 5.1 in the following way:

IR g( x) (x = bY)(x = p2)(x = b3)

55
1]

VX = 2)(x = 4)(x - 8)

(x2 - 6x + 8)(x - 8)

N So. the generating polynomial is described by the equa-
tion;

o . g(x) = x3 - 3x% + x + 2 (5.4)

) where sums and products are computed modulo 11.

i
!
b |9 8 7 6 5 4 3 2 1 |
f

2P 29 28 27 26 25 24 23 22 51 50

VALUE| 6 3 7 9 A S5 8 4 2 1 |

“Q Figure 5.1 Verification of the generator b = 2
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D. DECODING TOOLS

1. Syndromes

In chapter IV, we introduced the general syndrome

Wy calculation for the Reed-Solomon code by the equation;
o n
¥ $
e -q9i .
S; = R;ja"Jt ,  j =0,1,2...2¢t-1 (5.5)
J =0
l;‘:‘:
@ﬁ where a represents the primitive root of unity (generator)
0 A
by and t represents the error correcting capability of the RS

N code. Referring to equation 5.5, we will have four syndromes

namely So, Sl' S5, S3. The first syndrome, So- will show us

‘ﬁé the error amount occuring in the codeword. The last digit of
lgg the codeword, the one we appended for parity checking,will
gy only be used in calculating the syndrome value Sgy. We will
-¢; not use the last digit for calculating the other three
‘ﬂg syndromes Sy, S, and Sj.

?ﬁ_ 2. Conditions of Syndromes in Case of Errors

ol : After calculating the s&ndromes, we will be able to )
ij examine the received codeword and make some decisions about
ﬁgi it. From the syndromes Sg, Sy, S, and Sj it is possible to
%,g find and correct up to and including any two symbol errors
ﬁ#‘i according to the following descriptions.

;$§% In case of no error, all the syndromes will be equal to
ﬁa ! zero.

302 Sg = S; = Sp = S3 =0 (5.6)
a‘ I

?"? In case of one error, the syndromes have the property of
ol So = °x

. - ko _ K

NoE S1 T exa €2

o)

B 5, = ekazk - ek‘;k

. -
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|

i_&‘ 3 S3 = eka3k - ek23k
|

where ex is the error amount occuring in the kth digit. So,

iy ) the equality we will be looking for in case of one error is
- - — 5K

o ‘ SI/SO - Sz/sl - 63/52 = 2 (5.7)

g Thus the location of the error is determined by S,/Sqy = 2k,

%ﬁ the kth digit and the amount of the error is Sg = ey.

%ely In case of two errors, the syndromes are given by

3 Sog = et e
R |
::;Q ! Sl = ekak + elal
N
"b; } 52 = ekaZk + elaZl
0 I
' - 3k 31
;. l S3 - eka + ela
,) )
:N ; where the two errors are ey and e occuring in the kth and
Xie
* ; 1th digit of the codeword, respectively. The inequality we
1'Ji will consider in case of two errors is
Sl
ey
;::' S1/Sq # S,/5, # S3/5; (5.8)
LA
ih That is, not all of S,/S5, S,/S; and S3/S, are equal. In the
:Q next section we give the procedure to determine the loca-
'
:m tions of the errors in case of two errors.

E. DECIDING ON THE POSITIONS OF ERRORS

o Once the syndromes are calculated, we are able to decide
2 on the positions of errors occuring (if any). But, it 1is
w1 . . . .

b0 required to have an equation to do that which will hawve only

= 1 and k (the positions of errors) as unknowns. Such an

B . . . . '

W equation can be obtained in the following way:

.'g.

‘a' The syndromes have been determined as

!’)'
~. = & +

o So 1
(4 i
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{4
e s, = e2k + a2!
5, = e22k + q2°!

54 = e23% + g231

Nl
1yl
ﬂjf where e and d represent the error amounts and k and 1 repre-
o sent the error positions, respectively.
;%f Now, we multiply the syndromes S, and S; forming
Jikg
ot
@ S153= e22%K+q22%Lieq( 2K23142123k,
ji‘ea ’
|2|'Q
AN Next we form the square of the syndrome S,;
RN
3‘3 (52)2= 0224k, 42241, peqaktl(2k+l,
LA )
oy When we subtract (52)2 from 5183 we obtain
My
_g S1S3 =(S,)%=ed2R*1(-2(2K2l)+221422K,
=)
‘,.
oY And finally we get the equation
‘I '
WS
oo S;S3-S,2=ed2k2t(21-2K)? (5.9)
<
158
e |
5 |
B |
o ! In the following steps, we substitute e and d in equa-
:‘ i tion 5.9, so that we get an equation including only k and 1
f i as unknowns. First, by referring to the first syndrome Sg-
‘# ’ » . .
;H : it can be derived that, e = S5 - d. When we substitute this
0% é value of e in the second syndrome equation, we get
) |
ﬁ% (Sp - d)2% + a2l - sy =0
] i
!
-',l'!! d(zl - zk) + Sozk - Sl = O
:2' So, the wvalue of d can be obtained as
o
v -
.
LN
e
,:’;'\ 37

AT 8 A R e et T Al . e N e e AN e et e N, s
) . \ A - A I A N A AR R AL
LD £ 4 n TN A N AR U A Y YRS TS IR S AR Y S s n\"!iﬁ-il.\l‘!.n



wh d = (5= 28sq) / (21 - 2K) (5.10)
‘xf!,’i
i

B Now, we substitute the value of d obtained in equation
%ﬁ ﬁ 5.10, into equation 5.9 yielding

s155 = (5502 = ef(s1-552%) / (21-2%)] 2R2l (21-2%)2

e(S1-5g2%) 2K2l(2l-2k)

?$‘ Now using again the equation, e = SO- d, the Qalue of e

%2

can be calculated as;

*
-

2 e = (sg2t - sq) / (21 - 2K) ' (5.11)

Now, we substitute equation 5.11 into equation 5.9;

2 - 1 ky-,15k
5153=(S5)° = (Sg2~ = S1)(81 = Sp2™)2 2

s
* .
* 2.5,

= (5921 - s59) 2% (57 - 542K) 2K
0 Finally, we get the equation;
%? $153-52,=(sg221-5,21)(5,2K-5,22K)

- As seen in the above equation, the only unknown terms are,
an the error positions k and 1. We use this equation to locate
A the error positions by a trial and error procedure in the

N subsequent chapter.
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VvI. IMPLEMEMTATION

! A. BACKGROUND
. The fundamental and necessary concepts for constructing
! an RS(11,7) code are discussed in the previous chapter. Cur .
findings from Chapter V are used in this chapter to imple-
ment the RS(11,7) code. We use the generating polynomial,
" primitive root of Aunity, syndromes and the vrelationship .
: between the positions  of the errors occuring as we found and .
discussed them in Chapter V.

We also, in this chapter, provide the encoding and !
decoding algorithms in more detail and also illustrate some

examples to show their application.

g -

B. ENCODING PROCESS '

As discussed in chapter IV, the RS codewords are formed .
as multiples of the primitive generating polynomial g(x). As
g(x) is of degree r, there are n - r = k information symbols ‘
which can be chosen freely. Then r check symbols are deter-- '
mined so that the resulting codeword satisfies the criteria
e stated, namely that the codewords are multiples of the

generator polynomial. In other words, the check digits are
the coefficients of the remainder r(x) upon division of the

information polynomial p(x) by g(x) as shown in example 6. 1.

Y gb el e

e TR
E &

Here we consider n as 10, as our codeword is of length 10.

We also append the parity check digit after we calculate the
first three check digits. So p(x) can be obtained as a poly-

nomial of degree 9 and a parity check symbol appended. X

Ve s &

1. Encoding Algorithm

1. Represent the NIIN part of the stock number as
cnefficients of the polynomial of degree 2. Call this

polynomial p(x). Thus x>

~ (the polyncmial of degres o
representing the 7 digits of NIIN) is the v

representation.
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: iﬁ 2. Perform the required division p(x)/g(x) where dg(x) 1is
iﬁ& the generating polynomial having the value of x3 - 3x2
o + X o+ 2.

¥ .

g 3. Calculate the check digits as the coefficients of the
i%’ remainder r(x) upon division of p(x)/g(x) and add
s these check digits to the right of the NIIN.

ot

W 4. Calculate the parity check digit, by using the
s;. equation;

W0 9

AR Zci+p=0 (mod 11) (6.1)
LI i=0

e

l}j where p represents the parity check digit value and C
w vector of first 10 digits of the codeword.

4;; 5. Append the parity check digit to the far right and
&2 output the 11 digit number as the encoded codeword C.
!

N Example 6.1 : Now we will give an example of the encoding i
; é process by applying the encoding algorithm we developed. ;
; E Suppose the NIIN part of the stock number is 0000001. If we i
e represent it as the coefficients of the p(x), of degree 9, !
103 we obtain p(x) = x3, and we satisfy step 1 of the algorithm.
.&E According to step 2, we perform the required division of
%&? p(x)/9(x) and get the remainder r(x) = 3x2 - X - 2. S0, this
Ne will give us the first three check digits as -3, 1 and 2.
{f& Mow we add these digits to the right of NIIN and get C =
--‘_-:: CC00001~-312. Then applying the equation 6.1, we calculate
aig the parity check digit p as -1, so that é; c; + p = 0.
s Appending this parity check digit to the far right, vyields
~r:h / the encoded codeword 0000001-312-1. We wuse this encoded
f@ﬁ cocdeword in our decoding examples in this chapter and call
3{% . it C. %hen C 1is received, with or without ervrors, i% 13
L ~alled R.

_\.ﬁ

N 10

%
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Example 6.2 : We now provide another example to
show how the required division 1is performed in a more
complex case. Suppose the NIIN part of the stock number is
9876543. The required division p(x)/g(x) can be seen in
Figure 6. 1. Then, the check digits are obtained as A, 8, A
(A represents number 10). Applying the encoding algorithm
step 4, the parity check digit will be obtained as 7. So the
output of the algorithm is the codeword R = 9876543A8A7.

~ C. DECODING PROCESS

The decoding process is, in general, much more compli-
cated than the encoding process. Not only must we deal with
the detection of errors but also with their correction.
Error detection is much easier than error correction. Since
the code polynomial is a multiple of the generating polyno-
mial p(x), the received code polynomial R(X) will be a code
polynomial if and only if the remainder upon division of
R(x) by p(x) is zero. ’

There is only one condition for a wvalid codeword, that
is the equality of all Ehe syndromes to zero. This condition
is the desired one we will be trying to satisfy throughout
the entire decoding process.

We will develop our decoding algorithm, considering the
three possible conditions which are related with the errors

occuring in the encoded codeword. They are listed below:

1. No error condition
2. One error condition

3. Two errors condition

For the first condition, we have already shown that, all
the syndromes are equal to zero. So, it is easy to determine

the no error condition. The decoded (output) codeword will

be the same as the received codewcrd. In case of one error,
it is necessary to figure out the error position first. Vie
41
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. 9x® + 2x5 + 4x* + 9x3 + 2x2 + 4x +6

-

ﬂ& x3+8x2+x+2 9x9+8x8+7x7+6x6+5x5+4x4+3x3
]
e ~9x2-6x8-9x7-7x5

2x8+9x7+Ax6+5x5
-2x8-5x7-2x%-4x>

-2
Sl

S T3

»

=2,
P
wr -
-

ax7+8x%+ x°+ax?
-4x7-ax8-4x.-8x* |

0 9x%+8x°+7x%+3x3
-9xP-gx3-9x%-7x3

i 2x5+9x4+7x3+0x2
i " -2x°-5x%-2x3-4x2 |

%S 4x4+5x3+7x2+0x
. i -4x4-Ax3-4x2-8x

i ) 6x3+3x2+3x+0
KY ' -6x3-4x2-6x-1

Ax2+8x+A

~
oo

g Since the coefficients of the remainder will be
the values of the first three error check digits,
they will be A, 8 and A.

]

St

o e
Ve e e ls

-

"

-
»

-
H

Figure 6.1 Required Division for Example 6.2

will be using the equality we described for the first

4
X2,

syndrome Sl to decide the error position in our decoding

5

algorithm.
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a-Once the syndrome S; is calculated from the equation 8§,
= ; RjZ'J we can find out the error positicon using the
other equation described for calculating the first syndrome,
S, = Rkek, where Rk = SO and it is known. After deciding the
error position, the necessary correction process 1is qguite
simple, as the actual error is equal to S5, and it will be
explained in the decoding algorithm.

In case of two errors, the correction process is much
more complex than the other two cases. Again, we must decide
the error positions girst. We use the equation described in
step 10 of the decoding algorithm to do that. After finding
out the error positions by trial and error method and the
equation of step 10, we use two different tables to deter-
mine the error amounts occuring in the kth and lth digits of
the codeword, the determined error location points. The way
to use these two tables will also be explained in the
decoding algofithm.

We follow a systematic procedure to describe the steps
of the algorithm so that, steps number two through four are
related to the no error cohdition, steps number five through
eight are related to the one :-error condition and steps
number nine through fifteen handle the two error condition.
Step number one, sixteen, seventeen and eighteen are the
common steps and they are used each time the decoding algo-
rithm is applied. Note: if it is determined that none of the
three possibilities is operable then we say that more than 2
errors have occured and a decoding failure is declared.

1. Decodi Algorit

1. Compute the syndromes from the received word R:

n-{

. = . -ji
S / RJZ

2. If SO = Sl = SZ = S3 = 0, then decide "NO ERROR".

3. Set error vector E to all O's.

43
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4. Go to step 16.

5. If §7/S5 = S,/8; S3/8, then decide "OME ERROR".
6. Calculate k, the error position, using the equation;
$1/8g = k

7. Set error vector E to;

0 E; # Ey
E = where 1 =0,1,...,10

8. Goto step 16.

9. If not all of S$1/S5qg SZ/SI . S3/S, are equal
then decide "TWO ERRORS".

10. Decide 1 and k, which correspond to the locations

of errors occuring, using the following equation
S153-(5,)%=(5022(971)+5,2971) (5, 29-Ke5,22(9-K))
where k and 1 lie in the range of 0 to 9.

11. Set i to 1 which corresponds to the index of
of Table V.

12. Pick the ith pair of e,d which corresponds

to the error amount occuring using Table V.

13. Try to satisfy the equation using the present

values of e, d, k, 1;
s, = e297K 4 g2°-1

14. If the equation is not satisfied, then increment
i by 1 and go to step 12.
If ncne of the values of i allow a solution
then declare that more than 2 errors occured

occured and a decoding failure results.

......



;@3 15. Set error vector E to;

5,

E = d E; = E; where i =0,1,...,10

K ) . 0 otherwise

¢
’Qa 16. Output the codeword by subtracting the error

L vector from received vector.

C=R-E-= (RO-EO’.. ,Rlo'Elo)
Gy 17. Check syndromes again and verify that;

Y - — - -

‘ Sg = S, = S5, = S3 = 0.

o 18. Then the information symbols are :

Co, Cl,... ,C6.

X 0 1 2 3 4 5 6 7 8 9

A
) VALUE| 6 3 7 9 A 5 8 4 2 1

,w, Figure 6.2 Values of the 29°%
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> We illustrate the decoding algorithm we presented in

%‘ this chapter by three examples. Each of these examples will

N correspond to one of the error conditions we discussed in

(. the decoding algorithm.

gg We use the received codeword R, as mentioned in

ii example 6.2 throughout the examples we will present in this

i section. In each case, the value of C is 0000001-312-1.

PR, We will first begin with the no error condition:

o

g Example 6.3 : Suppose we have received the codeword R =

m, 0000001-312-1. Referring to the decoding algorithm, first we
calculate the syndromes in the following way:

l,;,

N | Received Codeword
» |
4

\ |
¢ |Position # (k)

1y |

Applying the decoding algorithm step 1, the

syndromes will be;
)
e Sg=1-3+1+2-1=0,
o
2

#,
& S, ===> 1 -3 1 2

B

|
ZH e

-
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w I

’4; 52 ===> 1 =3 1

W = -4 4 2 ====>SZ=9'4+4*2=O.

W Sy ===> 1 -3 1 2

]
(@]

) 6 -5 8 2 ====> S5 = 6 = 5+ 8 + 2

N Since Sj = Sl = S, = S3 = 0, decide "NO ERROR".

i Set the error vector E to all zeros;
o E = 00000000000
Ky Applying step 16 of the algorithm;

N R=0 0 0 0 0 0 1 =3 1 2 =1

- E=0 0 0 0 0O O O c 0 O 0

o C=0 0 0 0 0 0 1 =3 1 2 -1

Check and verify the syndromes and output the veri-
;W fied codeword as C = 0000001-312-1. The information is then
3 determined as 0000001.

W 48
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Example 6.4 : Suppose we have received the codeword R =
0000011-312-1. Referring to the decoding algorithm, first we

will calculate the syndromes in the same way as 1in the

previous examp.e.

PRLAT'R |

adh | Received Codeword

ﬁﬁ |

N 1

.» R l
4

JPosition # (k)

|

DAL
-3
fh? Applying the decoding algorithm step 1, the
e syndromes will be;
BN .
-\“ _ -
g So=1+1=-3+1+2-1=1,
e Sy ===>1 1 =3 1 2
24 23 22 21 20

wht
S
“: 5 8 -1 2 2 ===>8) =5+8=-1+2+2=5.
e
. .
e S, ===>1 1 -3 1 2
el 28 26 2% 22 20
«.\.
i
at 3 9 -4 4 2===>5,=3+9-4+4+2=3
R
o Sy ===>1 1 =3 1 2
el 22 59 56 53 0
n':
“@,
N 4 6 -5 8 2===>S5,=4+6=-5+8+2=4,
b’ The syndromes satisfy the condition;

.
%';‘ S1/Sg = Sp/S; = S3/S, = 2% Decide "ONE ERROR".
bﬁ!,
R0
U {
ol 49
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According to the decoding algorithm step 6;

SO = E, =1
o sl =5 = 24 = Ekzg-k ===> kK = 5,

e So, decide the error position as position number 5 and the
L error as 1.

% Set the error vector E as described in step 7 of the
N algorithm;

W E = 00000100000
N Applying step 16 of the algorithm;

, R=0 0 0 0 0 1 1 -3 1 2 -1

D - E=0 0 0 0 0 1 O 0O 0 0 0

(@]
]

© 0 0 0o 0 0 1 -3 1 2 -1

Check and verify the syndromes and output the veri-
fied codeword as C = 0000001-312-1. Again the information is
™ 0000001.

& 50
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¥ :
"ot
Qﬁ Example 6.5 : Suppose we have received the codeword R =
;l» 0001101-312-1. Referring to the decoding algorithm, we again
oo calculate the syndromes in the usual way.
o
‘0:::1
o
AR | | I
e |Received Codeword | O O 0 1 1 0 1-3 1 2 =1 |
R

«;tl{ | l l
;:“' | I |
& |Position # (k) -0 1 2 3 4 5 6 7 8 9 10 |
| l |
N

e

\s
‘$ﬁ Applying the decoding algorithm step 1, the
b‘n“" .

syndromes will be;

5,
Rg Sp=1+1+1=-=3+1+2-1=2
Y

Y

‘§; S;===>1 1 0 1-3 1 2
1‘1,‘.‘
Wy 3
N 9 -1 0 8-1 2 2 ===>8;=8=2
¥
3
R S,===>1 1 0 1-3 1 2
i
oo 8
da 4 -1 0 9-4 4 2 ===>8,=3=2
]

)

) 53 ==>1 1 0 1-3 1 2

= 28 25 22 29 26 23 20

Bl
44
4 3-1 0 6-5 8 2 ===>S5;=2

€

A
- Since the syndromes are not all zero and do not
(R
$& satisfy the condition;
:p‘}v
’:::E: $1/Sg = S5/S1 = S3/S,, decide "TWO ERRORS".

e

0::’ S1

s‘;
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According to the decoding algorithm step 10;

K

, 2 ,
S155 - (5,02 = 2% - (28)7 = 23282 27

bt
o

h

We try to satisfy the equation;

&4

IO

D

Substituting the values of S, and Sq, and applying

;; the trial and error method, the only pair of k and 1 would
‘k be calculated as;
N
oy - -
Y k=3, 1 = 4
e So, decide the error positions as position numbers 3
Gy and 4.
M
?% According to step 12 of the algorithm, pick the
first possible pair of the e and d using Table V and then
bl
g try to satisfy the equation described in step 13;
"i .
b 5, = e297K + 42971
"# 23 - 1*29-3 + 1*29"4
A 23 =264+ 25=38
D
R% 23 = 23
)
:ﬁ‘ So, it would take only one iteration to decide the
- errors, deciding e = d = 1. Set the error vector E as
&? described in step 15 of the decoding algorithm;
U
b
s E = 00011000000.
e
| If e = d =1 did not satisfy the equation, the next
ﬁ? pair e = 3, d = A would be tried, etc. i
%/ i
i
ﬁ:
"
A |
k)
W
b)),
) ¢
Ry
-
D 52
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Applying step 16 of the algorithm;

R=0 0 0 1 1 0 1 -3 1 2 -1

- E=0 0 0 1 1 0 O c 0 O 0]

C=0 0 0 0 0 0 1 =~3 1 2 -1

Check and verify the syndromes and output the veri-
fied codeword as C = 0000001-312-1. Again the information is
given as 0000001.

If more than 2 errors were made, then the above
procedure would fail and a "decoding failure" would result.
At this point a request for a retransmission would be initi-

ated by the receiver.

53

oy e e a e e ey e el



VII. POSSIBLE INTERFACE FOR DATARBASE APPLICATIONS

iﬂé A. BACKGROUND
it;: he size, power and number of database management infor-
:%:T : mation systems available and in use has grown dramatically
y in recent years. Business, industry and government seem to
\: have been swept into the automation of data collections with
;;Eé a fervor akin to the automation of accounting systems during
2 the late 1960's. As might be expected, people are once again
. discovering that the old adage of '"garbage in, garbage out"
;:ﬁ continues to hold true. Although many of the errors in data-
:?f bases could probably be caught and corrected by appropriate
:-5 error checking and correcting procedures, the cost for
e humans to perform such checking would be very high and the
fJB work very tediocus. It makes sense to automate data storage
;ﬁ and management, and remove the painstaking tasks for error
_ﬂf checking and correcting from the human operator.
. | Virtualiy all DBMS's (Database Management System) incor-
&ii porate 1in them some form of error checking facilities.
E;: [Ref. 7]. Typical <checks are for proper data format
L?: (integer, real, alphabetic, etc.), proper numeric sign, the
- correct number of data items and the presence or absence of
;EB data in certain fields. While these checks are important and
! help to prevent some errors, the number of situations in
z%; which major errors in databases have been found clearly
indicates that these checks are not sufficient. The purpose
fxﬁ_ of the error correction mechanism we described in the
ii?g previous chapters is.to provide a means of error checking
a5 which far exceeds the power of typical DBMS type of error
%_; checking. The error correction mechanism, we introduced, can
‘%ﬁ - be used both to perform error correction for pre-existing
gzg databases, which we term the checking of of a 'static' data-
ﬁ.; base, and to check proposed database updates before they are
v
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passed on to the DBMS, which we term the checking of a

-'dynamic' database.

B. DATABASE ERRORS

Database errors can be divided into four types:
security, consistency, reliability and integrity. Security
encompasses the control of all unauthorized access to the
database. Both physical and logical means of access control
are usually required. Consistency deals with the problems of
errors which are introduced in the process of sharing data-
bases. These can be due to either multiple users sharing a
single database or multiple users sharing more than one copy
of a database. A database can be inconsistent when multiple
updates are processed out of sequence or the database
changes during the course of a user providing an update.
Under this definition, consistency checking involves only
the specific data. Such checking would not invoke any of the
"implied meanings" of the data, i.e the information in the
semantic description of the database. Thus, a requirement
such as an update of one item necessitating a corresponding
update of another item is not a consistency problem [Ref. 8]

Reliability refers to the problems of assuring that both
the hardware and software components of the data management
system perform as they were intended all of the time.
Integrity errors include all types of errors which can be
introduced due to active use of the database system. These
may result from mundane sources such as typing or spelling
errors, transmission errors which cause the data to be
garbled or transformed between the original source and the
database system, or user misunderstandings of the nature or
content of the database.’

A computer has no built-in criteria which it can use to
determine whether or not a given piece of data is correct in
a given context. Thus, if a computer is to be used to

detect and correct integrity errors, the computer must be
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provided with such criteria. The error correction mechanism
b} we described addresses only the detection and correction of
]

primarily the last of these error types, integrity errors,

although some consistency errors can be detected.

g&: C. QUERY INTERPRETER

ﬂﬁ . Before starting to explain the role of the query inter-

) preter which is the existing interface between the users and

gﬁ DBMS, it is necessary to identify the types of queries which

ﬁk could be given to the Supply System database.

%k Depending upon the NATO countries in which this kind of
interface exists, the number of user gqueries which can be

éﬁ given to the system might vary. In general, there is a range

ﬂ{ of twenty to thirty queries which can be found in a typical

J Supply System including queries for search, update, delete
' etc. However, one common part of all these gueries is the
. NSN (National or Nato Stock Number). In other words, no
x&. matter what the query is, there should be a stock number in
it, since the stock number is the only Key of the database.
Thus, it would be a pretty good idea to check and then

$ﬁ verify the NSN before it is passed to DBMS for processing
ﬁ according to the given query. This kind of checking can be
9$ obtained via a detection and correction routine which would

be added to the query interpreter as a component.

;? As shown in Figure 7.1, the checking component of the
‘ query interpreter acts as a filter between users of the DBMS
%: and DBMS itself. This checking component is a 'passive'

’ filter in the sense that it is not visible to the DBMS users
gxf until a potential error is detected and corrected. However,

whenever an error is detected and corrected, the system
U informs the user about the correction has been made, or if
L]

the number of errors are more than two it declares a
U

?éa ) decoding failure and requests a retransmission or another
‘) query.
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Figure 7.1 Possible interface between user and DBMS

Generally, writing detection routines is not difficult.
If the structure is sufficiently well understood for update
and access routines to be written, then the detection
routine can 1likely also be written with about the same
effort. The implementation of a correction routine is more
difficult than implementation of a detection routine. But,
for this particular application, it becomes relatively easy
using the decoding algorithm we presented in Chapter VI.

" Recalling the construction of a NSN from Chapter I,
there are thirteen digits in a NSN. After the encoding
process, there are added four more digits as check digits
which makes the length of the codeword seventeen digits.
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When this encoded codeword is received with or without error
by the query interpreter, it is the correction routine's
responsibility to check and verify it using the check digits
and the decoding algorithm described in Chapter VI. In this
way, terminal operator's mistakes as well as the other type
of mistakes discussed as integrity errors can be detected
and corrected. After verifying the received codeword
(encoded NSN), the check digits are removed and the output
of the correction routine gives the original thirteen digit
NSN. Then this NSN and the interpreted query are passed to
the DBMS for processing. Using this kind of interface and
error checking and correcting mechanism together does not
require any change in the construction of the physical data-
base, and it provides a more efficient system in terms of
reliability, integrity and time.
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VIII. CONCLUSION

In this thesis we have taken a modular approach to the
implementation of Reed-Solomon code in order to provide an
error correction mechanism for the existing National or NATO
Supply systems. By initially discussing algebraic coding
theory and finite field theory, we have shown that they play
an integral part in the overall implementation. The imple-
mentation theory is represented first because of its neces-

sity to understand the implementation more easily. It is
then followed by the design of the encoding and decoding
algorithms which provide two error correction for the
Mational or NATO Stock Number { NSN).

After defining the approcach and the associated algo-
rithms, it is then followed by a possible database inter-
face. Thus the user of a database system can be supported by

this kind of interface and database system itself becomes
more reliable and efficient. The most common problems and
general types of errors we have presented in the previous
chapter showed that, when human operators get involved with
the operation of these kind of systems, numerous types of
errors should be expected. Encoding and decoding algorithms
we presented in this thesis are developed based on the facts
that an algorithm should be satisfied in order to detect and
correct possible types of human operator errors without
costing more in terms of money and personal effort. Because
we can correct up to two errors, the reliability and integ-
rity have improved.

It is hoped that, with this thesis as a guide, some
interested supply officers or other officials will make the
necessary changes in the Supply System Database in order for

increasing its reliability and efficiency.
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